还是点分治
树上问题真有趣ovo,这道题统计模3为0的距离,可以把重心的子树分开统计,也可以一次性统计,然后容斥原理减掉重复的。。
其他的过程就是点分治的板子啦。#include#define INF 0x3f3f3f3f#define full(a, b) memset(a, b, sizeof a)using namespace std;typedef long long ll;inline int lowbit(int x){ return x & (-x); }inline int read(){ int X = 0, w = 0; char ch = 0; while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); } while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar(); return w ? -X : X;}inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }inline int lcm(int a, int b){ return a / gcd(a, b) * b; }template inline T max(T x, T y, T z){ return max(max(x, y), z); }template inline T min(T x, T y, T z){ return min(min(x, y), z); }template inline A fpow(A x, B p, C lyd){ A ans = 1; for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd; return ans;}const int N = 50005;int n, cnt, rt, ans, sum, res, head[N], size[N], r[3], cur[3], dis[N];bool vis[N];struct Edge{ int v, next, w; } edge[N<<1];void addEdge(int a, int b, int c){ edge[cnt].v = b, edge[cnt].w = c, edge[cnt].next = head[a], head[a] = cnt ++;}void dfs(int s, int fa){ int mp = 0; size[s] = 1; for(int i = head[s]; i != -1; i = edge[i].next){ int u = edge[i].v; if(u == fa || vis[u]) continue; dfs(u, s); size[s] += size[u]; mp = max(mp, size[u]); } mp = max(mp, sum - size[s]); if(mp < ans) ans = mp, rt = s;}void getDis(int s, int fa){ res += r[(3 - dis[s]) % 3]; cur[dis[s]] ++; for(int i = head[s]; i != -1; i = edge[i].next){ int u = edge[i].v; if(u == fa || vis[u]) continue; dis[u] = (dis[s] + edge[i].w) % 3; getDis(u, s); }}void calc(int s){ r[0] = 1; for(int i = head[s]; i != -1; i = edge[i].next){ int u = edge[i].v; if(vis[u]) continue; full(cur, 0); dis[u] = edge[i].w % 3; getDis(u, s); for(int j = 0; j < 3; j ++) r[j] += cur[j]; } full(r, 0);}void solve(int s){ vis[s] = true, calc(s); for(int i = head[s]; i != -1; i = edge[i].next){ int u = edge[i].v; if(vis[u]) continue; ans = INF, sum = size[u]; dfs(u, 0), solve(rt); }}int main(){ full(head, -1); n = read(); for(int i = 0; i < n - 1; i ++){ int u = read(), v = read(), c = read() % 3; addEdge(u, v, c), addEdge(v, u, c); } ans = INF, sum = n; dfs(1, 0), solve(rt); res = (res << 1) + n; int t = gcd(res, n * n); printf("%d/%d\n", res / t, n * n / t); return 0;}